

Design robot morphology by hand and then learn control policies by RL. Here we show some commonly used robot morphologies, presented in the Mujuco benchmark. It is hard to guarantee the effectiveness of a morphology.

Search robot morphology in the Euclidean space. For example, add a joint at some coordinates. The search space is large, and the generated morphology is wired, not suitable for the task.

Search robot morphology in a non-Euclidean space: A space represented by symmetry group.

Background and Notation

Dihedral group (containing rotation and reflection transformations): For $n \geq 3, \operatorname{Dih}_{n}=\left\{\rho_{k}, \pi_{k-1} \mid k=1,2, \ldots, n\right\}$. ρ_{k} : counterclockwise rotate by $360^{\circ} / k$. π_{k-1} : first ρ_{k}, then reflect along x-axis

Subgroups of the Dihedral group:

$H_{d}=\left\langle\rho_{d}\right\rangle$, where $1 \leq d<n$, and n is divisible by d $K_{i}=\left\langle\pi_{i}\right\rangle$, where $1 \leq i<n-1$
$H_{k, l}=\left\langle\rho_{k}, \pi_{l}\right\rangle$, where $1 \leq l<k \leq n-1$, and n is divisible by k
Orbit:
The orbit of a point $x \in X$ is the set of all its transformation under G.

