

消袭大学 交叉信息研究院

Heng Dong¹, Junyu Zhang², Tonghan Wang³, Chongjie Zhang¹ ¹IIIS, Tsinghua University, ²Huazhong University of Science and Technology, ³Harvard University

Institute for Interdisciplinary Information Sciences, Tsinghua University

Introduction

Previous work on robotic learning

Design robot morphology by hand and then learn control policies by RL. Here we show some commonly used robot morphologies, presented in the Mujuco benchmark. It is hard to guarantee the effectiveness of a morphology.

Search robot morphology in the Euclidean space. For example, add a joint at some coordinates. The search space is large, and the generated morphology is wired, not suitable for the task.

Search robot morphology in a non-Euclidean space: A space represented by symmetry group.

Background and Notation

Dihedral group (containing rotation and reflection transformations): For $n \ge 3$, $\text{Dih}_n = \{\rho_k, \pi_{k-1} | k = 1, 2, ..., n\}$. ρ_k : counterclockwise rotate by $360^{\circ}/k$. π_{k-1} : first ρ_k , then reflect along x-axis.

Subgroups of the Dihedral group: $H_d = \langle \rho_d \rangle$, where $1 \leq d < n$, and n is divisible by d $K_i = \langle \pi_i \rangle$, where $1 \leq i < n-1$ $H_{k,l} = \langle \rho_k, \pi_l \rangle$, where $1 \le l < k \le n - 1$, and *n* is divisible by k

Orbit:

The *orbit* of a point $x \in X$ is the set of all its transformation under G.

Symmetry-Aware Robot Design with Structured Subgroups

Result

