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Natural Evolution

= Creatures adapt to new environments to solve daily tasks better through
natural evolution

= Can we mimic this evolution process so that robots can solve new tasks
better by changing their morphologies?

https://universe-review.ca/F10-multicell01.htm
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Multi-Cellular Robot Design

= Evolution Gym

2D multi-cellular systems
design space: 1017~1034

I:i: [[] Vertical Actuator

] Horizontal Actuator
B Rigid Cell

[ Soft Cell

[ ] Empty Cell

An example robot designed by our method

Bhatia, Jagdeep, et al. "Evolution gym: A large-scale benchmark for evolving soft robots." Advances in Neural Information Processing
Systems 34 (2021): 2201-2214.
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Major Difficulties of Robot Design

= Robot design problem can be formulated as a bi-level optimization problem

U Outer level: Search in the design space.

————————————————— e B e e U Immensely large design space
~-- Q EvoGym: 1017 ~1034

subjectto 7p = arg max J(, D) """"""""""" Q Inner level: Evaluate each candidate design
s L Computationally expensive to find its optimal
controller

U Inaccurate evaluation (due to the lack of
optimal control policy)
O Itis hard to tell which one is better if the
robots are similar at the beginning of

training.
Two robots .-I ‘ J
designed b
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Intuition

= Previous work GA directly searches in the vast design space
= fails to learn effective structures to cross the obstacles
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Intuition

= CuCo adopts a predefined curriculum from smaller robots to larger robots

= the smaller robot typically faces more challenges when solving the original
tasks, e.g., the same obstacles could be more difficult for it.

= cannot offer useful guidance for the remaining stage in the curriculum.
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Curriculum-based Co-design of Morphology and Control of Voxel-based Soft Robots. ICLR 2023.
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Our Idea

= Designing multi-cellular robots in a coarse-to-fine manner

= first searching for coarse-grained robots with satisfactory performance
= Smaller design space

= subsequently refining them
= an example of coarse-to-fine from painting

Coarse-grained




Intuition

= QOur method designs robots in a coarse-to-fine manner
= focus on promising regions with the helpful guidance of coarse-grained
design
= successfully finds a simple and effective design to solve this task
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Intuition

= QOur method designs robots in a coarse-to-fine manner

= focus on promising regions with the helpful guidance of coarse-grained
design
» successfully finds a simple and effective design to solve this task

Iteration A [ Vertical Actuator
GA [ Horizontal Actuator
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[[] soft Cell
[ ] Empty Cell
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Method

= The space of robot designs can be organized as a hierarchy

Coarse-Grained
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We propose to embed the hierarchy
of robots into Poincaré Disk using
Sarkar’s construction for better
optimization.
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Method

= Sampling robots from the center of Poincaré Disk to the border is exactly the
process of coarse-to-fine robot design.
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Method

= HERD: Leverage Hyperbolic Embeddings for coarse-to-fine Robot Design

Embedding

Optimization

Algorithm 1: HERD: Hyperbolic Embeddings for Coarse-to-Fine Robot Design
Input: robot design space D, hierarchy size N, Poincaré ball B%, population size of CEM N,,

1
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{D;,C(D;)}’ « build the robot hierarchy for each design D; € D using K-Means;
S = {D;, z;}¥ + embed the robot hierarchy {D;,C(D;)}¥ in Poincaré ball B¢ by applying
Sarkar’s Construction in Algorithmmrecursively;
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initialize control policy 7, CEM mean p and variance o;

while not reaching max iterations do

replay buffer H « 0;

fori € {1,2,--- ,N,} do

v; ~N(u,diag(o)); // sample an embedding from Euclidean space
z; = exp§(vi) ; // map to Poincaré ball, Equation ()
D;, z; < argmin p ,yes De(Zi, 2) ; // find the nearest valid
embedding and its corresponding design, Equation ()

use 7 to control current robot design D; and store trajectories to H;

update 7 with PPO using samples in H;

update 1 by averaging the elite v;s based on the performance in 7, and linearly decrease o;
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D*,z* < argmin p ,es De(expg (), 2) // optimal robot design
Output: optimal robot design D*, control policy 7
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Results

= Hard Tasks

= Robot design can improve performance compared to handcrafted robots
= HERD can effectively help design robots
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https://sites.google.com/view/hyperbolic-robot-design

@ Machine Intelligence Group, IIS, Tsinghua University 14






